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a b s t r a c t

In the United States, Central California has gained significant interest in offshore wind energy due to its
strong winds and proximity to existing grid connections. This study provides a comprehensive evaluation
of near-surface wind datasets in this region, including satellite-based observations (QuikSCAT, ASCAT,
and CCMP V2.0), reanalysis (NARR and MERRA), and regional atmospheric models (WRF and WIND
Toolkit). This work highlights spatiotemporal variations in the performance of the respective datasets in
relation to in-situ buoy measurements using error metrics over both seasonal and diurnal time scales.
The two scatterometers (QuikSCAT and ASCAT) showed the best overall performance, albeit with
significantly less spatial and temporal resolution relative to other datasets. These datasets only slightly
outperformed the next best dataset (WIND Toolkit), which has significantly greater temporal and spatial
resolution as well as estimates of winds aloft. Considering tradeoffs between spatiotemporal resolution
of the underlying datasets, error metrics relative to in-situ measurements, and the availability of data
aloft, the WIND Toolkit appears to be the best dataset for this region. The framework and tradeoff
analysis this research developed and demonstrated to assess offshore wind datasets can be applied in
other regions where offshore wind energy is being considered.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last few decades, renewable energy sources have
become an increasingly important component of broader energy
portfolios. Costs of renewable energy have decreased substantially,
and more governments recognize the importance of reducing
greenhouse gas emissions. As a result, governments at many levels
have set targets for increasing renewable energy generation. For
example, across the European Union, the European Parliament and
Council has set a target of 20% for energy consumption from re-
newables by the year 2020 (2020 Climate & Energy Package).
Additionally, many states within the United States have adopted
increased renewable energy portfolio targets. This includes Cali-
fornia, which has set a goal to supply 50% of energy through
renewable sources by the year 2030 (SB350-Clean Energy and
e Sciences, California Poly-

).
Pollution Reduction Act of 2015).
In response to governmental initiatives and decreases in costs,

deployment of renewable energy projects has been increasing
rapidly, with an emphasis on photovoltaic solar and land-based
wind turbines [1]. Offshore wind turbines also have received
considerable interest and investment, particularly in Europe [2].
Offshore wind energy has several advantages over solar and land-
based energy sources since offshore winds tend to be stronger
and more consistent than land-based winds [3] and are less likely
to directly conflict with other land-use activities. Additionally,
offshore wind energy production may be able to reduce discrep-
ancies in production and demand that are difficult to alleviate with
solar output because of its diurnal cycle.

To best guide the evaluation and planning of offshore wind
energy in a particular area, accurate wind datasets with sufficient
temporal and spatial resolution are needed. Offshore winds typi-
cally exhibit temporal variability on interannual, seasonal, synoptic,
and diurnal time scales. Furthermore, wind power is proportional
to the cube of the wind speed, meaning that small changes in wind

mailto:ywang59@calpoly.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2018.10.008&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2018.10.008
https://doi.org/10.1016/j.renene.2018.10.008
https://doi.org/10.1016/j.renene.2018.10.008


Fig. 1. Bathymetry of the Central California Coast highlighting the locations of buoy
platforms (red circles, representing buoys 46028, 46011, 46054 from north to south),
existing state electrical grid connections (red diamonds), National Marine Sanctuaries
(dashed blue lines; Monterey Bay Sanctuary to the north and Channel Islands Sanc-
tuary to the south), and the 1000m isobath (solid black line). The state electrical grid
connections from north to south are the Morro Bay power plant, Diablo Canyon nu-
clear power plant, and Vandenberg Air Force Base.
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speed (e.g., over the course of the day or with different seasons) can
lead to drastic differences in power output. Also, for power gener-
ation to be most valuable, it will need to match grid demands and
base load needs, which vary daily and seasonally. Thus, wind
datasets long enough to capture interannual variability and with
sufficient temporal resolution to resolve diurnal variability are
required for estimating wind energy power production and value.
In addition, understanding spatial variation in offshore wind power
can help support site planning and assessment by highlighting
areas with the greatest potential to generate power and therefore
areas with the greatest potential value. Despite the importance of
understanding temporal and spatial variations in offshorewinds for
assessing this renewable energy resource, previous work has rarely
resolved both daily and seasonally cycles at multiple sites and/or
over a large area. Moreover, the utilization of temporally-averaged
(mean) wind speeds over an annual cycle can lead to large errors
and mismatches in grid demand and production estimates over
shorter (seasonal and daily) time scales.

The lack of detailed assessments across a range of time scales
and over broad spatial domains is mainly attributable to the
absence of a single perfect offshore wind dataset with the appro-
priate temporal and spatial resolution. In-situ near-surface wind
measurements from moored buoys are often available over long
time periods (decades) with a very high temporal resolution
(hourly or better), but these buoys are usually sparse (often
>10e100 km apart). Remote sensing measurements of near-surface
winds obtained from satellites equipped with scatterometers can
measure vector wind fields across large areas that are more
spatially resolved than buoy platforms, but the measurements are
only available during satellite passes, at most several times per day
[4]. Reanalysis products, which objectively combine both observa-
tions and numerical models, often have consistent temporal reso-
lution over decades and contain winds at various vertical levels
above the surface, but have coarser spatial resolution compared to
satellite-derived data. Finally, regional atmospheric models have
some of the highest spatial and temporal resolution, including data
aloft at various vertical levels; however, they often experience
substantial error relative to in-situ observations and are sensitive to
local parameterizations [5].

Previous studies have evaluated the performance of various
wind datasets in different regions (see Carvalho et al. [3] and the
references therein). Pickett et al. [6] and Tang et al. [7] assessed the
performance of QuickSCAT satellite observations relative to local
buoys along the West Coast of the United States, but they did not
assess other datasets. Carvalho et al. [8] conducted a comprehen-
sive comparison of satellite-based observations, reanalysis prod-
ucts, and theWeather Research and Forecast (WRF) regional model
with five buoys in the Iberian Peninsula coast. Carvalho et al. [3]
extended the analyses of Carvalho et al. [8] by including newer
scatterometers (e.g. ASCAT). However, these studies focused on
error metrics over one year and did not consider longer time pe-
riods or seasonal and diurnal variability. Alvarez et al. [9] used a
longer time period (10 years) to evaluate satellite-based products
and reanalysis products against in-situ buoy measurements in the
southern Bay of Biscay. They found that QuikSCAT had the lowest
bias in wind speed and wind direction and the Cross-Calibrated
Multi-Platform (CCMP, blended satellite product) had the lowest
error, but they did not include an analysis of the diurnal signal.

Collectively, these studies and others (see Carvalho et al. [3] and
the references therein), also suggest that the performance of
different wind products varies by study region, indicating the need
for site-specific analyses. Themajority of site-specific evaluations of
offshore wind data have focused on coastal waters along Europe,
typically in association with existing or planned offshore wind
farms (e.g. Refs. [3,8e10]). To date, all but one of the world's
offshore wind farms in operation consist of fixed-bottom wind
turbines located in shallow waters of less than 100m. Yet, as
technology advances, the cost of building floating wind turbines in
water greater than 100m deep may be less than that of fixed-
bottom platforms by 2030 [11]. The first MW-scale floating tur-
bine was successfully deployed in the North Sea in 2009 [45]. In
2017, the world's first floating offshore wind farm was successfully
launched with the Hywind project in Scotland, paving the way for
future wind farms in deeper waters further from the coast [46].
With improvements in floating turbine technology, deployment of
offshorewind farms is likely to increase in the future, particularly in
areas with deeper shelf waters. Understanding wind patterns (both
spatially and temporally) in these environments will be key to
guiding and assessing marine renewable energy production.

Along theWest Coast of the United States the continental shelf is
narrow, such that waters are often >100m deep only a few kilo-
meters from shore. As a result, the majority of the ocean area with
the potential for wind power production is located in deep waters
where floating turbines would be necessary [12]. The Central Cal-
ifornia region considered in this study, spanning from south of
Monterey Bay to Point Conception is characterized by moderately
strong winds throughout the year (e.g., [13]; Fig. 1). Additionally,
this region is located in the vicinity of several existing connections
to the state's electrical grid, including the Morro Bay power plant
(closed in 2014) and the Diablo Canyon nuclear power plant (Cal-
ifornia's last remaining nuclear power plant slated to close in 2025).
Finally, the study domain is outside of National Marine Sanctuary
areas, where restrictions on disturbance to the seabed will likely
preclude floating turbine deployment. Attracted by these features,
private industry has shown great interest in pursuing permits from
government agencies for the development of deep water, floating
offshore wind farms (BOEM: https://www.boem.gov/California/).
Therefore, a detailed analysis of the available wind products in this
region is needed. However, aside from a few simple analyses of
winds (e.g. [14]), there are no comprehensive assessments of long-
range, high-resolution wind products in this region. Without this
information, it is difficult to accurately evaluate the power pro-
duction potential of this region.

https://www.boem.gov/California/
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To address this knowledge gap, we conducted a comprehensive
evaluation of near-surface winds from various datasets (satellite-
based, model, reanalysis) and compared them to local buoy mea-
surements. We used these datasets, which span nearly a decade
and with up to 2-km spatial resolution, to assess error metrics (bias
and root-mean-square-error) over seasonal and diurnal time scales.
Using the results of these point-to-point comparisons, and
consideration of the spatiotemporal resolution of each dataset and
whether it provides data aloft, we examined tradeoffs between
various dataset attributes (e.g. bias, error, spatial and temporal
resolution, availability of data aloft) to identify the best dataset for
offshore wind energy application. We then explored characteristics
of the chosen dataset to reveal temporal changes in near-surface
wind speeds across the domain along the Central Coast of Califor-
nia. The framework we developed to evaluate the various products
is readily applicable to other regions where similar analyses are
needed, and the wind dynamics we reveal for the Central Coast can
be used to support the generation of accurate and detailed esti-
mates of potential power production in the region.

2. Data and methods

2.1. Study domain

The Central Coast of California is located along the eastern
boundary of the Pacific Ocean and features steeply sloping ba-
thymetry. In this study, we considered the domain bounded by the
Monterey Bay National Marine Sanctuary to the north, the Channel
Islands National Marine Sanctuary to the south, and the 1000m
isobath in the offshore direction, generally west (Fig. 1). The
offshore limit is the maximum water depth for offshore wind tur-
bine installation based on current technology and industry expe-
rience [12]. Along this stretch of coastline, there are three existing
connections to the state's electrical grid: theMorro Bay power plant
(closed in 2014), the Diablo Canyon nuclear plant (slated to close in
2025), and Vandenberg Air Force Base. This region is characterized
by moderately strong and consistently equatorward winds
throughout much of the year, particularly for the region north of
Point Conception (e.g. [13,15]). A previous study suggested that the
annual average of wind speed at hub height exceeds 7m s�1,
highlighting the potential for offshore wind farms [12].

2.2. Wind datasets

2.2.1. Buoy observations
Near-surface winds in this study domain were obtained from

moored buoys measuring winds at 5m above the surface and
reporting an average wind speed every 10min (i.e., the National
Data Buoy Center (NDBC) continuous wind product, http://www.
ndbc.noaa.gov/). We employed buoy data as a reference to repre-
sent true characteristics of near-surface winds, as is commonly
done in the existing literature (e.g. [16]).While buoymeasurements
are the best available in-situ data, buoy measurements may be less
reliable under strong winds [17], but these measurements are still
likely the best estimates of true wind speeds. Among all datasets
considered, the buoy dataset is the only to output near-surface
winds at 5m above the sea surface, with the other datasets
outputting near-surface winds at 10m above the sea surface. Thus,
to enable a direct comparison, we converted the buoy-measured
wind speeds from 5m to 10m assuming a neutrally stable atmo-
sphere following the method of Liu and Tang [18]. This is a
reasonable assumption given that calculated atmospheric stabil-
ities show a neutrally stable atmosphere during most seasons and
hours of the day. Potential errors in 10-m winds speeds when at-
mospheric stability deviates slightly from neutral conditions are
expected to be small [19]. Buoys 46028 and 46011 are located north
of Point Conception, and buoy 46054 is located just to the south of
Point Conception, at the western edge of the Santa Barbara Channel
(red dots in Fig. 1).

2.2.2. Satellite-based observations
We evaluated two scatterometers, which measure surface wind

stress by sending microwave signals and then recording the back-
scattered signal in response to ocean roughness (e.g. Ref. [18]).
Surface wind stress is converted to equivalent neutral winds 10m
above grounds based on the assumption of a nearly neutral atmo-
sphere [18]. Vector wind fields are produced at approximately the
same geographical location during ascending and descending
passes of the satellite (i.e., twice per day). Here, we opted to use the
swath data with 12.5 km spatial resolution because this high res-
olution product can contain small-scale features [20]. We down-
loaded both scatterometer-derived datasets from the NASA's Jet
Propulsion Laboratory Physical Oceanography Distributed Active
Archive Center site (https://podaac.jpl.nasa.gov).

The first scatterometer dataset we evaluated was QuikSCAT,
which measures the backscattered signal using the Ku-band fre-
quency and passes through our study domain around 5 and 18 h
every day. QuikSCAT data were available from June 1999 to
November 2009. This widely-used product has been validated for
accuracy against in-situ buoy observations over various forcing
regimes (e.g. [21]). We adopted the latest version of the Level 2
product (QuikSCAT Level 2B Version 3), which uses the improved
geophysical model function and corrected rain contaminated wind
speeds with a neural network approach [22].

The second scatterometer dataset we evaluated was ASCAT,
which is a new-generation scatterometer launched in October
2006. It agrees well with QuikSCAT especially when wind speeds
range between 3m s�1 and 20m s�1 [23]. ASCAT passes a local
point around 9 and 20 h and uses the C-band frequency operation,
which is less sensitive to rain contamination than the Ku-band
frequency operation [24]. Because of its narrower swath width,
ASCAT is limited to approximately 60% of the coverage of QuikSCAT
during the same period [25]. The ASCAT Level 2-Coastal product
applies a boxcar filtering to yield more wind data close to the coast
[26]. We used the Level 2 product's Climate Data Record version,
which was reprocessed using consistent calibration from January
2007 to March 2014.

The last satellite-based product we assessed was the Cross-
Calibrated Multi-Platform Version 2 (CCMP V2.0, a continuation
of CCMP Version 1.1) [27]. We obtained this dataset from Remote
Sensing Systems (http://www.remss.com/). This blended product
combines satellite-derived wind fields from microwave radiome-
ters and scatterometers, with moored buoys and ERA-Interim
model data using a Variational Analysis Method. It provides
global and gap-free wind fields on a 0.25� grid four times per day
from 1987 to the present. Previous studies in the southern Bay of
Biscay [9] and the Iberian Peninsula coast [3,8] demonstrated that
CCMP accurately captured offshore winds.

2.2.3. Reanalysis datasets
We also assessed two reanalysis products, which combine in-

situ observations with numerical models: 1) Modern-Era Retro-
spective Analysis (MERRA, http://disc.sci.gsfc.nasa.gov/mdisc/), a
global reanalysis product [28], and 2) North American Regional
Reanalysis (NARR, https://www.esrl.noaa.gov/psd/), a regional
reanalysis product [29]. MERRA is a commonly-used global rean-
alysis product for wind resource evaluations (e.g. [30]). It provides
hourly data on a grid of 2/3� by 1/2� from 1979 to 2016. NARR
outputs data every 3 h (since 1979) and has a spatial resolution of
32 km. Both products yield wind data at various pressure levels

http://www.ndbc.noaa.gov/
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above the surface. In part because it assimilates more observations
into its model, NARR data yield more accurate results relative to
global reanalysis products [29]. Previous studies in other regions
have also shown good agreement between NARR and in-situ
measurements near the surface and aloft (e.g. [31e33]).

2.2.4. Regional atmospheric model simulations
We analyzed simulated near-surface wind speeds from two

regional model datasets. The first dataset covers the entire U.S.
West Coast and was carried out using WRF model version 3.6
[34,35], which is initialized and forced at boundaries with the
Climate Forecast System Reanalysis. The model is configured with
two nested grids, where the outer domain has a horizontal reso-
lution of 18 km, and the inner domain has a resolution of 6 km. It is
set up with a full set of parameterization schemes including the
Mellor-Yamada-Nakanishi-Niino planetary boundary layer scheme
[36], which is one of the best planetary boundary layer schemes to
simulate realistic cloud cover and wind. More details can be found
in Renault et al. [35]. Hourly 10-m wind fields above the ground
level are available from 2004 to 2013 and used for this study.

The second regional model dataset is from the WIND Toolkit
(https://www.nrel.gov/grid/wind-toolkit.html), developed by the
National Renewable Energy Laboratory (NREL) for the purpose of
wind power application [30]. The results were generated by the
WRF model version 3.4.1, which is initialized and forced at
boundaries by the European Center for Medium-Range Weather
Forecasts Interim Reanalysis. This model uses three nested grids
with resolutions of 18 km, 6 km, and 2 km, respectively, with the
inner 2 km grid covering the entire contiguous United States. The
optimal model configuration is the best one from the eight model
configurations tested by NREL. This configuration outputs simula-
tions with small overall bias and in complex terrain, realistic hourly
and diurnal wind variations, and highly resolved wind fields near
the surface. More details can be found in Draxl et al. [30,37]. We
analyzed hourly 10-mwind fields (2007e2013). In addition to near-
surface wind fields, wind data at higher altitudes up to 200m are
also available.

2.3. Comparisons and statistics

In order to compare the various datasets to the buoy observa-
tions, we obtained the closest point in space and time from each
wind dataset relative to each of the three buoys. We included ob-
servations only if they met our collocation criteria with buoy data:
measurements must have been recorded within 30min of a buoy
measurement and no more than 12.5-km from the buoy for all
datasets except WIND Toolkit. We use a more restrictive spatial
criterion of 2 km for WIND Toolkit because of its higher resolution
of 2 km. Unlike gridded datasets, the closest swath point of the
scatterometer data to a local buoy is not fixed and its measurement
time is slightly different each day. In line with previous studies (e.g.
[6]), we found no connection between the separation distance and
the bias in QuikSCAT/ASCAT relative to a local buoy. Between 2000
and 2008 (time period used for comparison in this study), the mean
separation distance between the closest QuikSCAT point and buoy
was 5.59, 4.45, and 4.93 km for buoy sites 46028, 46011, and 46054,
respectively. Between 2007 and 2013, themean separation distance
between the closest ASCAT point and buoy was 4.91, 3.55, and
3.77 km. The distance between a local buoy and the closest point of
a comparative gridded dataset is shown in Table 2.

We evaluated the seven aforementioned wind datasets in rela-
tion to buoy measurements using the collocation criteria described
above. To summarize the performance of each wind data, we uti-
lized the statistical metrics of the bias and the root-mean-square-
error (RMSE) between one dataset and buoy measurements. To
illustrate the relationship between two variables, we fitted the
paired data to a linear regression line and provided its intercept, its
slope, and the coefficient of determination (R2) of the model fit in
Tables 2e4.

Complete annual data were available for at least 7 years for all
datasets (see Table 1 for details), thereby reducing the impact of
interannual variability on our analysis. To display climatological
characteristics of near-surface winds, we used buoy data from 1998
to 2016 and compared these winds between the buoys and other
datasets for each year of overlap.

2.4. Tradeoff analysis

In order to evaluate the relative merits of the datasets and
identify the best dataset for offshore wind power applications, we
applied a tradeoff analysis to our results. Tradeoff analysis is a
useful graphical tool for comparing the relative performance of a
set of options in relation to multiple objectives [38]. We considered
five key objectives, or factors, in the tradeoff analysis of the seven
wind datasets: temporal and spatial resolution (higher better), the
absolute value of bias and RMSE (lower better), and availability of
wind speed data aloft (better). We then conducted visual inspec-
tion of pairwise tradeoff plots of the seven datasets in relation to
the five factors in order to compare and contrast the relative merits
of the datasets and identify the most appropriate one(s) for
offshore wind power applications.

3. Results

3.1. Buoy climatology

Climatological characteristics of buoy winds are shown in Fig. 2.
Each curve represents the composite day average wind speed for a
particular month (i.e., average wind speed calculated using data
over all years from a particular hour during each month). All times
referenced are Pacific Standard Time (PST).

The three different buoy sites display similar diurnal structure
with daily minimums in the late morning and peaks in the early
evening (Fig. 2). There is also a slight seasonality in both the timing
of the daily minimums and peaks, as well as the daily range. During
months with stronger wind forcing (e.g., spring/summer upwelling
months, cf. Walter et al. [15]), the daily peaks arrived slightly later
compared to during other months. For example, at 46028, wind
speed peaks around 20 h in May and at 18 h in January. Notably, the
diurnal variability is comparable to that of the seasonal variability.
There is also considerable buoy-to-buoy (i.e., spatial) variability at
various time scales. Among the three sites, buoy 46054 displayed
the strongest diurnal variations in wind speed with differences as
large as 3m s�1 between the daily minimum and maximum in
some months.

Seasonal cycles also varied among buoys. The 10-mwind speeds
at buoys 46028 and 46011 reached their maxima in spring, whereas
the 10-m wind speed at buoy 46054 reached its maximum in the
summer (see Walter et al. [15] for a discussion of the seasonality at
buoy 46011). This seasonal variation is closely connected to large-
scale pressure systems, which fluctuate seasonally, but tend to
produce equatorward winds near the surface along the coastline
(see Fewings et al. [13] for a detailed description). Among the three
sites, buoy 46054 had the strongest andmost variablewinds, which
is strongly impacted by the interaction between the marine
boundary layer and coastal capes (i.e., Point Conception) [13].

3.2. Paired comparisons with buoy measurements

Direct comparison between the wind speed calculated from

https://www.nrel.gov/grid/wind-toolkit.html


Table 1
Characteristics of wind datasets considered for comparison with buoy observations.

Dataset Type of dataset Spatial resolution Temporal resolution Time used in this study

QuikSCAT Satellite (Swath) 12.5 km 2 times per day 2000e2008
ASCAT Satellite (Swath) 12.5 km 2 times per day 2007e2013
CCMP V2 Satellites and analyses 0.25olat/lon 4 times per day 2004e2013
NARR Regional reanalysis 32 km 8 times per day 2004e2013
MERRA Global reanalysis 1/2olat-2/3olon Hourly 2004e2013
WRF Regional model 6 km Hourly 2004e2013
WIND Toolkit Regional model 2 km Hourly 2007e2013

Table 2
Statistical metrics from the linear regression between buoy data and each of the comparison datasets.

Buoy Dataset Slope Intercept R2 Distance from buoy (km) Number of valid pairs

46028 QuikSCAT 0.90 1.01 0.92 5.59 5654
ASCAT 0.94 0.25 0.94 4.91 2153
CCMP V2 0.68 1.37 0.77 9.80 13013
NARR 0.76 1.59 0.75 9.07 26018
MERRA 0.59 1.69 0.74 26.85 78014
WRF 0.38 4.88 0.15 3.64 78012
WIND 0.79 1.13 0.83 0.62 55957

46011 QuikSCAT 0.85 1.56 0.84 4.45 5449
ASCAT 0.89 1.02 0.84 3.55 2241
CCMP V2 0.75 2.00 0.67 13.22 12368
NARR 0.72 1.40 0.69 7.62 24695
MERRA 0.62 2.04 0.64 29.07 74049
WRF 0.39 4.77 0.14 3.24 74046
WIND 0.77 1.65 0.73 0.89 51953

46054 QuikSCAT 0.68 2.23 0.82 4.93 3875
ASCAT 0.81 1.16 0.88 3.77 1670
CCMP V2 0.53 1.66 0.62 15.41 7928
NARR 0.49 1.13 0.53 7.62 15754
MERRA 0.40 1.76 0.58 31.41 47392
WRF 0.37 4.91 0.16 2.10 47385
WIND 0.80 1.45 0.79 0.99 34001

Table 3
Statistics from the comparison between the buoy data and comparison datasets,
including error metrics (bias and RMSE), as well as outputs (slope, intercept, coef-
ficient of determination) from the linear regression between the wind speed dif-
ference and the buoy wind speed.

Buoy Dataset Bias RMSE Slope Intercept R2

46028 QuikSCAT 0.26 1.22 �0.10 1.01 0.12
ASCAT �0.18 1.03 �0.06 0.25 0.06
CCMP V2 �0.94 2.20 �0.32 1.37 0.42
NARR �0.15 2.03 �0.24 1.59 0.23
MERRA �1.28 2.54 �0.41 1.69 0.58
WRF 0.41 4.47 �0.62 4.88 0.32
WIND �0.43 1.76 �0.21 1.13 0.26

46011 QuikSCAT 0.67 1.50 �0.15 1.56 0.14
ASCAT 0.38 1.40 �0.11 1.02 0.08
CCMP V2 0.52 2.02 �0.25 2.00 0.19
NARR �0.29 1.90 �0.28 1.40 0.26
MERRA �0.21 2.04 �0.38 2.04 0.40
WRF 1.17 4.07 �0.61 4.77 0.28
WIND 0.28 1.82 �0.23 1.65 0.18

46054 QuikSCAT �0.49 2.03 �0.32 2.23 0.50
ASCAT �0.33 1.47 �0.19 1.16 0.31
CCMP V2 �1.99 3.29 �0.47 1.66 0.57
NARR �2.78 4.00 �0.51 1.13 0.55
MERRA �2.87 4.08 �0.60 1.76 0.75
WRF 0.04 4.43 �0.63 4.91 0.36
WIND �0.07 1.90 �0.20 1.45 0.19

Table 4
Statistical metrics of wind direction (o) from paired data. A positive bias indicates a
clockwise bias.

Buoy Dataset Bias RMSE

46028 QuikSCAT 6.74 38.74
ASCAT 1.49 37.36
CCMP V2 6.51 41.86
NARR 3.77 40.85
MERRA 5.95 41.98
WRF 7.10 68.88
WIND 3.84 36.76

46011 QuikSCAT 0.44 45.83
ASCAT �3.09 47.30
CCMP V2 2.02 44.47
NARR 0.26 41.96
MERRA 0.28 44.49
WRF 14.50 68.05
WIND 0.99 39.97

46054 QuikSCAT 1.39 46.85
ASCAT �3.86 46.73
CCMP V2 7.78 42.85
NARR �8.32 45.03
MERRA 11.12 45.30
WRF 14.18 69.37
WIND 2.70 38.65
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each buoy at each site and each respective dataset weremade using
all data available over the selected time period for all points in each
dataset that met collocation criteria. Fig. 3 shows scatter plots and
the linear regression line between each wind product's wind speed
and the buoy site's wind speed. Statistics from the linear regression
and collocation criteria are shown in Table 2. The errormetrics (bias
and RMSE) are displayed in Table 3.

Based on the performance of the linear regression (Table 2,
Fig. 3) and the error metrics (Table 3), ASCAT had the lowest bias
and RMSE, and the largest coefficient of regressionwith buoy-based
site measurements, slightly outperforming the other
scatterometer-based observation, QuikSCAT. This is not surprising,



Fig. 2. Composite day average buoy wind speed for a particular month (colors) using
data calculated over all years (1998e2016) for each buoy (46028, 46011, and 46054
from left to right).

Fig. 3. Comparisons of wind speed between the buoy measurements and each
respective dataset (all in m s �1). The value on each subplot shows the coefficient of
determination (R2) from a linear regression model (fit shown as bold black line). The
one-to-one line is also shown for reference (thin gray line). Wind speed is binned by
1m s �1 along both of the x-axis and y-axis, and then divided by the total number of
data pairs to yield the frequency of data points in a particular bin (colors). The rows
from the top to the bottom are QuikSCAT (QS), ASCAT, CCMP V2.0 (CCMP), NARR,
MERRA, WRF, and WIND Toolkit (WTK). The columns from the left to the right
represent the local buoy 46028, 46011, and 46054, respectively. Note that the time
period used for analysis depends on data availability.
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given previous validations of the product in other regions (e.g. [3]).
We note, however, that the scatterometers (particularly ASCAT)
have the smallest number of points used for comparison with the
buoy data because of the temporal resolution (typically only two
measurements per day) and a shorter time period relative to other
datasets. Following scatterometer-based observations, the WIND
Toolkit showed the best correspondence with buoy data; this
dataset even outperformed the scatterometers slightly with respect
to bias at buoys 46011 and 46054 and had relatively low error as
well (Table 3). We note that the WIND Toolkit is also the most
spatially (2 km) and temporally (1 h) resolved dataset, and it con-
tains wind data at various levels about the sea surface. While the
WIND Toolkit, a version of theWRF regional model, displayed some
of the best results, the other WRF model considered (denoted WRF
here, a model developed for the West Coast of the United States)
showed the worst correspondence to local buoys in this region.
Given the sensitivity of the performance of the WRF model in wind
simulation to various configurations and parameterizations, (e.g.
[5]), it is possible that the better performance of the WIND Toolkit
than its counterparts is associated with its configuration particu-
larly optimized for simulating wind for wind energy applications.
The largest error (RMSE) among the three sites is generally found at
buoy 46054, which is located just south of Point Conception,
highlighting the difficulty of resolving the wind field near complex
land topography. Among these seven wind datasets, five (ASCAT,
QuikSCAT, CCMP, NARR, and MERRA) display the worst corre-
spondence at buoy 46054, while model simulations (WRF and
WIND Toolkit) show relatively consistent correspondence across all
buoys. The greater biases in the reanalysis datasets at buoy 46054
are likely due to their coarser spatial resolution, which is not able to
accurately capture small-scale coastal orography near Point
Conception and its impact on the velocity field.

To further investigate the differences between the various
datasets and the local buoys, we examined the wind speed differ-
ence between a particular dataset and the local buoy as a function
of the buoy wind speed (Fig. 4). In general, data products over-
estimated winds relative to the buoy at low wind speeds and
underestimated at high wind speeds, with varying degrees of
magnitude. This feature and negative relationship is consistent
with the findings of previous studies using less than two years of
data [3,6,7]. Statistics of the linear regression between wind speed
difference and buoy wind speed are shown in Table 3. Both
scatterometer-based observations (ASCAT and QuikSCAT) and
WIND Toolkit exhibit smaller slopes among the three local buoys,
indicating less functional dependence of the errors on wind speed
relative to other datasets. We note that at the lowest and highest
wind speeds, wind speed differences are less important for esti-
mating wind power production due to turbine mechanical con-
straints that require cut-in and cut-out wind speed restrictions at
low and high wind speeds, respectively.
3.3. Seasonal and diurnal bias

We examined the diurnal and seasonal dependence of bias and
error (RMSE) as a function of both the time of day (i.e., diurnal
signal) and month (i.e., seasonal signal) (bias: Fig. 5; RMSE: Fig. 6).
To ensure that one dataset and reference buoy have the same
sample size, we used paired data for the comparison analysis from



Fig. 4. Differences in wind speed between the buoy and the other respective datasets
as a function of the buoy wind speed (all in m s�1). The value on each subplot shows
the coefficient of determination (R2) from a linear regression model (black line). Wind
speed is binned by 1m s�1 along both of the x-axis and the y-axis, and then divided by
the total number of data pairs to yield the frequency of data points in a particular bin
(colors). The rows from the top to the bottom are QuikSCAT (QS), ASCAT, CCMP V2.0
(CCMP), NARR, MERRA, WRF, and WIND Toolkit (WTK). The columns from the left to
the right represent the local buoy 46028, 46011, and 46054, respectively. Note that the
time period used for analysis depends on data availability.

Fig. 5. Bias (m s�1) in the hourly near-surface wind speed in each month for all
available paired data in relation to the buoy measurements at 46028 (left), 46011
(middle), and 46054 (right). A positive (negative) bias indicates that the respective
dataset overestimates (underestimates) the buoy wind speed. The white color in-
dicates zero bias. The rows from the top to the bottom are QuikSCAT (QS), ASCAT, CCMP
V2.0 (CCMP), NARR, MERRA, WRF, and WIND Toolkit (WTK). The following hours (in
PST) are shown for the respective dataset: QS (05 and 18); ASCAT (9 and 20); CCMP
(04, 10, 16, and 22); NARR (01, 04, 07, 10, 13, 16, 19, and 22); and for MERRA, WRF, and
WTF (hourly from 00 to 23). See Table 1 for the time period used for analysis of in-
dividual datasets.
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Section 3.2. Here, a positive (negative) bias indicates that the
respective dataset overestimates (underestimates) the buoy wind
speed.

Overall, QuikSCAT and ASCAT show some of the smallest biases
among the datasets, although there are only two hours per day for
comparison. Generally, both datasets show different performance
between the early morning and evening. While the bias is consis-
tently low at 46028, the bias at 46011 is more positive in the
mornings, whereas the bias at 46054 is negative in the evenings.
The other satellite-based product, CCMP, is more temporally
resolved (6 h resolution), but shows much higher bias. Similar to
QuikSCAT and ASCAT, CCMP tends to overestimate buoy-measured
wind speeds near 46011. In contrast to 46011, CCMP underestimates
wind speeds near 46028 and 46054.

The reanalysis product NARR exhibits consistently low biases at
46028 and 46011, yet strongly underestimates wind speed (i.e.,
negative bias) at 46054. Such low and homogeneous biases at the
two northernmost buoy sites (46028 and 46011) are not seen in the
other reanalysis product, MERRA, which displays weaker wind
speeds compared to buoy measurements (i.e., negative bias) in the
morning. The weaker winds in the morning, along with no differ-
ence (46028) or relatively higher wind speeds (46011) in the eve-
ning, particularly from May to September, lead to stronger
predicted diurnal cycles than observed at the buoys.

Both atmospheric regional model simulations used in this study
display lower biases at 46054, compared to other datasets. At
46028 and 46011, WRF overestimates wind speed throughout the
day in summer months. For the WIND Toolkit, wind speed is
underestimated (i.e., negative bias) close to buoy measurements at
46028. It tends to overestimate wind speed (i.e., positive bias) from
00:00 to 12:00 PST at 46011 in contrast to slight underestimates in
the evening.

Overall, QuikSCAT, ASCAT, and WIND Toolkit are the best per-
forming datasets with the lowest bias, and hence smallest dis-
crepancies from local buoys. The bias appears to be tied to the RMSE
in which the greater bias corresponds to the greater RMSE. Since
the diurnal and seasonal patterns in bias (RMSE) are different
across the three buoys, a simple correction of the underlying



Fig. 6. Similar to Fig. 5, but for root-mean-squared error in the hourly near-surface
wind speed in each month (m s�1).

Y.-H. Wang et al. / Renewable Energy 133 (2019) 343e353350
dataset is likely to lead to more uncertainties spatially.

3.4. Tradeoff analysis for seven datasets

Although scatterometer-based observations were the best per-
forming datasets relative to buoy measurements in this study
domain, their temporal resolution is too coarse to fully resolve the
diurnal cycle of near-surface winds. By contrast, the next per-
forming dataset, WIND Toolkit, provides hourly wind fields with
much higher spatial resolution. To evaluate the relative merits of
the datasets and identify the best dataset for offshore wind power
applications, we conducted tradeoff analysis to illustrate important
differences in the characteristics of the seven datasets in relation to
five factors: the absolute value of bias, RMSE, data availability aloft,
temporal resolution, and spatial resolution. Here, we considered
the overall performance (the absolute value of bias and RMSE) at
the three local buoy sites in this domain (Table 3), but the perfor-
mance at individual sites can be obtained in a similar fashion.

Fig. 7a shows the mean bias and RMSE over the three buoy sites
along with error bars representing one standard deviation from the
mean. ASCAT, QuickScat, and WIND Toolkit all have similarly low
levels of bias and RMSE, consistently at the three buoy sites;
however, among these datasets, only WIND Toolkit contains data
aloft (Fig. 7a). Furthermore, WIND Toolkit contains a far superior
spatial and temporal resolution, compared with ASCAT and
QuickScat (Fig. 7b). Only WRF contains spatial and temporal
resolution comparable with that by the WIND Toolkit, but WRF is
otherwise inferior because it has a much larger RMSE. Collectively,
these tradeoff analysis results indicate that WIND Toolkit is the
most appropriate dataset for supporting offshore wind power ap-
plications in this region.

3.5. Spatial and temporal variations of wind speed over a wide area

Based on the point-to-point comparison and the tradeoff anal-
ysis, the WIND Toolkit appears to be the best dataset for offshore
wind power applications and can better estimate wind speeds daily
and seasonally over a wide area. Fig. 8 displays the average 10-m
wind speeds at different hours and over four seasons from 2007
to 2013 using WIND Toolkit. Similar to the three buoy sites, other
areas across the central California region are characterized by
strong diurnal (weaker in the morning and stronger in the evening)
and seasonal (stronger in spring and weaker in fall) variability in
the wind speed. The diurnal cycle is enhanced during spring and
summermonths, relative to fall andwintermonths, consistent with
data from the three buoy sites shown in Fig. 2. Fig. 8 also highlights
the local maxima of wind speed near the complex topography of
Point Conception.

3.6. Characteristics of wind direction

We also assessed the climatology of near-surface wind direction
at the local buoys and in comparison with the other wind datasets.
We present wind direction in terms of where the wind is coming
from in degrees clockwise from true north (i.e., 0� wind direction
indicates a wind coming from the north and blowing to the south).
To account for the direction difference due to the discontinuity
between 0� and 360�, and to quantify the direction difference
between �180� and 180�, the wind direction from the respective
data set (qO) relative to the buoy data (qB) was modified following
Pensieri et al. [16]. First, we computed thewind direction difference
(qO e qB). When qO e qB> 180�, qO¼ qO - 360� and when qO e

qB<�180�, qO¼ qO þ 360�. With the modified qO, the wind speed
difference was calculated as qO e qB.

Based on the time period of 1998e2016, winds measured at the
three buoys are predominately northwesterly (i.e., along-shore
equatorward) (see wind rose histograms in Fig. 9). Persistent, but
variable in magnitude, northwesterly winds are closely linked to
large-scale pressure systems and the interaction between air flows
and topography along the coast (e.g. [13]). At the site 46054, near-
surface winds have more westerly components than the other two
sites, resulting from steering by the adjacent coastline that is ori-
ented in the E-W direction near the Santa Barbara Channel. Ex-
amination of the diurnal cycle shows a more northerly component
in the early morning, followed by a more westerly component in
the afternoon (not shown), consistent with local sea breezes along
the Central Coast (e.g. [39]).

The error metrics (bias and RMSE) of wind direction from paired
data are shown in Table 4. Most of the datasets reveal a positive (i.e.,
clockwise) bias, with the exception of ASCAT at 46011 and 46054
and NARR at 46054. Similar to the wind speed analysis, the two
scatterometers (QuikSCAT and ASCAT) and WIND Toolkit display
the best overall performance in terms of bias and RMSE for wind
direction. QuikSCAT has the lowest bias in wind direction at 46011
and 46054. ASCAT has the lowest bias in wind direction and the
second lowest RMSE at 46028. WIND Toolkit has the second lowest
bias and the lowest RMSE at all three sites.

4. Discussion and conclusion

This study provides a comprehensive evaluation of near-surface
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Fig. 7. Pairwise tradeoffs in relation to different factors for seven datasets. Blue color represents the data availability aloft, while red color represents no data available aloft. (a) The
absolute value of the bias and RMSE. The markers represent the mean and the error bars represent one standard deviation from the mean. (b) The temporal and spatial resolution.
QS and ASCAT have the same temporal and spatial resolution so they are overlapping in the panel (b). For the MERRA data, we show the spatial resolution in the latitudinal direction
(see Table 1).

Fig. 8. Averages of the hourly 10-m wind speed from WIND Toolkit over 2007e2013 at
different hours and four seasons. Each column from the left to the right represents
winter (December-January-February, DJF), spring (March-April-May, MAM), summer
(June-July-August, JJA), and fall (September-October-November, SON). Each row from
the top to the bottom represents 00 PST, 04 PST, 08 PST, 12 PST, 16 PST, and 20 PST.

Fig. 9. Wind rose histograms using data from 1998 to 2016 for the three buoys
considered in this study (46028, 46011, and 46054 from left to right, respectively). The
direction shown is the direction from which the wind is coming from in degrees
clockwise from true north (i.e., 0� wind direction indicates a wind coming from the
north and blowing to the south).
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wind datasets along the central region of the California coast,
ranging from south of Monterey Bay to north of Point Conception.
This particular region has received considerable interest in the
development of offshore wind farms due to its strong, steadywinds
and existing connections to the state's electrical grid. This study
provides the first known assessment of various wind datasets in
this region over both seasonal and diurnal time scales, both of
which are critical for accurate assessment of offshore wind power
production but are seldom considered at the same time by previous
studies. In addition, this study provides a framework by which to
assess spatiotemporal variations among various datasets for a
particular region, including comparison of error metrics over both
seasonal and diurnal time scales and tradeoff analysis. This
framework can be applied to other regions e using the five factors
we focused on and possibly others of importance ewhere accurate
estimates of wind speed are needed to evaluate wind energy po-
tential as well as other needs.

We examined near-surface wind fields from seven datasets,
including satellite observations, reanalysis products, and regional
model output. For each dataset considered, we found no common
pattern of bias and RMSE at all local buoy sites on certain hours of
the day or months of the year. Overall, the two scatterometers,
QuikSCAT and ASCAT, showed the best performance relative to the
in-situ buoy measurements. However, the coarse temporal reso-
lution (i.e., two measurements per day) and spatial resolution
(12.5 km) of these datasets limits their applicability for offshore
wind power assessment, particularly since this region experiences
strong diurnal wind forcing and strong spatial gradients in thewind
field. On the other hand, WIND Toolkit was one of the most highly
resolved datasets (1 h temporal and 2 km spatial resolution), and
performed nearly as well as the scatterometers in the various error
metrics we assessed. Moreover, the WIND Toolkit has wind data
available above the surface and at potential turbine hub heights,
which could obviate interpolation and extrapolation techniques
needed with other data products [3]. Site-specific assessments
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should consider tradeoffs between spatiotemporal resolution of the
underlying dataset, error metrics relative to local buoy measure-
ments, and the availability of data at hub height when assessing
various data products for offshore wind energy assessments and
power calculations. With consideration of these factors, the WIND
Toolkit appears to the best dataset for the central California region.
Due to the lack of wind observations at altitudes greater than 5 or
10m in this region, it is challenging to evaluate offshore wind po-
wer potential at hub height (i.e., heights of at least 100m above the
sea surface based on current technologies), which is a critical factor
considered for future offshore wind siting and development. Since
the surface wind distribution can provide the implications for wind
distribution at hub height, future work will focus on the calculation
of wind power generation at hub height from the WIND Toolkit
under different scenarios both spatially and temporally.

Finally, tradeoff analysis is a useful graphical tool for comparing
the relative performance of a set of options in relation to multiple
objectives. Grounded in Portfolio Theory (maximize return, mini-
mize risk of financial investments [40]), we applied tradeoff anal-
ysis to factors important to offshore wind power applications. This
analysis revealed the overall superior value of WIND Toolkit (in
relation to the prescribed factors), and more generally demon-
strated a framework that could be used for evaluating wind data-
sets in other regions. Furthermore, the tradeoff analysis framework
is adaptable, allowing for integration of additional factors impor-
tant to offshore wind power applications, including potential im-
pacts of wind energy development on the marine ecosystem
[41,42]. In such cases the tradeoff analysis axes can be expanded to
include these factors, and relative weights can be applied to the
factors, in order to help identify development options that most
effectively represent the socio-economic priorities in the system
[43].
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